Reinvestigation of Np₂Se₅: A Clear Divergence from Th₂S₅ and Th₂Se₅ in Chalcogen–Chalcogen and Metal–Chalcogen Interactions

Geng Bang Jin,^{*,†,‡} Yung-Jin Hu,[†] Brian Bellott,[‡] S. Skanthakumar,[†] Richard G. Haire,[§] L. Soderholm,[†] and James A. Ibers[‡]

[†]Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States [‡]Department of Chemistry, Northwestern University, Evanston, Illinois, 60208-3113, United States

[§]Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

Supporting Information

ABSTRACT: Single crystals of Np₂Se₅ have been prepared through the reactions of Np and Se at 1223 K in an Sb₂Se₃ flux. The structure of Np₂Se₅, which has been characterized by single-crystal X-ray diffraction methods, crystallizes in the tetragonal space group $P4_2/nmc$. The crystallographic unit cell includes one unique Np and two Se positions. Se(1) atoms form one-dimensional infinite chains along the *a* and *b* axes with alternating intermediate Se–Se distances of 2.6489 (8) and 2.7999 (8) Å, whereas Se(2) is a discrete Se^{2–} anion. Each Np is coordinated to 10 Se atoms and every NpSe₁₀ polyhedron shares faces, edges, or vertices with 14 other identical metal polyhedra to form a complex three-dimensional

structure. Np L_{III}-edge X-ray Absorption Near Edge Structure (XANES) measurements show a clear shift in edge position to higher energies for Np₂Se₅ compared to Np₃Se₅ (Np³⁺₂Np⁴⁺Se²⁻₅). Magnetic susceptibility measurements indicate that Np₂Se₅ undergoes a ferromagnetic-type ordering below 18(1) K. Above the transition temperature, Np₂Se₅ behaves as a paramagnet with an effective moment of 1.98(5) $\mu_{\rm B}$ /Np, given by a best fit of susceptibilities to a modified Curie–Weiss law over the temperature range 50–320 K.

INTRODUCTION

When compared to the oxides, halides, and pnictides, binary actinide chalcogenides An_xQ_y (An = actinide; Q = S, Se, Te) have a broader chemical composition and structural variety, exhibiting An:Q ratios between 1:1 and 1:5.1 Underpinning this variety are the redox and bonding capabilities of the chalcogens, which enable the formation of a variety of Q-Q interactions.^{2–7} Depending on specifics of the metal (M) sublattice, these interactions permit the formation of a host of discrete chalcogenide monomers, finite oligomers, one-dimensional chains, ribbons, two-dimensional layers, or three-dimensional networks. This is particularly true for the selenides and tellurides.⁷ The formation of oligomeric moieties is accompanied by the reduction of neutral Q to Q^{x-} (0 < $x \le 2$) anions. Depending on the redox potential of the cation, there is an added potential for variability through in situ redox reactions with charge transfer between the M and Q substructures.

Actinide compounds display extremely rich chemistry owing to their partially filled 5f orbitals with varying degrees of localization that increase across the series.¹ A long discussed issue in the field of actinide materials is the bonding or itinerancy of 5f electrons and the resulting f counts or valences of the metal ions. Clues to the electron distribution within chalcogenide compounds can be found in their structural details, specifically in the An-Q and Q-Q distances obtained from single-crystal studies, because these distances are known to scale with An and Q valences.^{7,8} Neptunium (Np) is particularly important in this regard, as it sits on the border between tetravalent thorium (Th), uranium (U), and more lanthanide-like plutonium (Pu), exhibiting an intermediate behavior in the An_xQ_y system.⁹ More than half of reported Np_xQ_y compounds, including Np₃Q₅ (Q = S, Se),¹⁰ β -NpS₂,¹¹ Np₂Q₅ (Q = S, Se),^{12,13} NpQ₃ (Q = S, Se),¹⁴⁻¹⁶ are isostructural with Th or U analogues, within which Np is predominantly +4; Np₂Q₃ (Q = S, Se, Te), 11,14,15,17 NpTe₂, 17 and NpTe₃¹⁷ are isostructural with Pu analogues, within which Np is +3; NpQ (Q = S, Se, Te) are isostructural with both U and Pu phases adopting the NaCl-type structure at ambient conditions.¹⁸ However many of the Np_xQ_y compounds were studied a few decades ago using powder samples. As a result, ambiguities remain about selected crystal structures and physical properties, and even the existence of some of the reported phases, owing largely to impurities in the powder samples and the lack of single-crystal data.^{9,18}

 Received:
 May 31, 2013

 Published:
 July 24, 2013

As part of broader research efforts to understand electron distributions in redox-active 5f systems we are interested in clarifying the structures and electron distributions in some Np_xQ_y phases. Toward this end we have successfully prepared large single crystals of mixed-valent Np_3Q_5 (Q = S, Se; $Np^{3+}_2Np^{4+}Q^{2-}_5)$ compounds and characterized their structures and magnetism.¹⁰ In the current study, we focus on the series of An_2Q_5 (An = Th, U, Np; Q = S, Se, Te).^{12-14,19-23} Previous single-crystal studies have shown that the pseudotetragonal structure of Th₂S₅ contains S²⁻ and S₂²⁻ anions and Th⁴⁺ cations,²¹ whereas the structure of U₂Te₅ consists of infinite $-\text{Te}-\text{Te}-\text{Te}^{x^{-}}$ chains (0 < x < 2), rendering the valence state of U ambiguous.^{24,25} Th₂Se₅, U₂S₅, Np₂S₅, and Np₂Se₅ were considered to be isostructural with Th₂S₅ including the Q^{2-} , Q_2^{2-} , and An⁴⁺ ions; however, their X-ray powder diffraction patterns did not display the split reflections observed for Th_2S_5 . The splittings seen in the Th analogue suggest a symmetry lower than tetragonal.^{13,22} Single-crystal X-ray diffraction data of Th₂Se₅ have been recently reported, where a modulated structure was determined, crystallizing in a monoclinic superspace group.²³ Furthermore, the ²³⁷Np Mössbauer spectrum on a powder sample of Np₂Se₅ showed an isomer shift intermediate to those for the Np^{4+} and Np^{3+} chalcogenides.¹³ To our knowledge, "U₂Se₅", "Th₂Te₅", and "Np₂Te₅" have not yet been reported.²⁰ Considering this information, together with the different chemistry and ionic radii observed among An_xQ_y (An = Th, U, Np; Q = S, Se, Te) systems, the chemical bonding and structures within U_2S_5 , Np₂S₅, and especially Np₂Se₅ could be different from those of Th_2S_5 , Th_2Se_5 , and U_2Te_5 .

Herein we report a high-yield synthesis of Np₂Se₅, its singlecrystal structure, X-ray absorption spectra, and magnetic properties. The focus of the structural work lies on the Se sublattice and whether it shows the same Q–Q interactions as those seen for Th₂S₅ and Th₂Se₅, which would indirectly confirm the Np valence state. Our studies show that the structure of Np₂Se₅ is related to, but deviates from those of Th₂S₅ and Th₂Se₅. The implications of this difference are examined in terms of different Q–Q and An–Q interactions, and ionic radii. XANES and magnetic susceptibility data are included to complement the structural findings. Taken together, our results provide evidence that the valence state of Np in Np₂Se₅ is greater than +3 and probably less than +4.

EXPERIMENTAL METHODS

Syntheses. Se (Cerac, 99.999%) and Sb (Aldrich, 99.5%) were used as received. Brittle ^{237}Np chunks were crushed and used as provided (ORNL). Sb_2Se_3 was prepared from the direct reaction of the elements in a sealed fused-silica tube at 1123 K. 26

Caution! ²³⁷Np is an α - and γ -emitting radioisotope and as such is considered a health risk. Its use requires appropriate infrastructure and personnel trained in the handling of radioactive materials. The procedures we use for the syntheses of Np compounds have been described.²⁷ Np (0.020 g, 0.084 mmol), Se (0.020 g, 0.253 mmol), and Sb₂Se₃ (0.100 g, 0.208 mmol) were loaded into fused-silica ampules in an Ar-filled glovebox and then flame-sealed under vacuum. The reaction mixtures were heated in a furnace to 1173 K in 24 h, then to 1223 K in 24 h, kept at 1223 K for 48 h, cooled to 1173 K in 24 h, then cooled to 673 K in 150 h, and finally cooled to 298 K in 24 h. The reaction products included black crystals of Np₂Se₅ and unreacted black lustrous Sb₂Se₃²⁸ crystals in the form of large clusters. The separation of the flux from the products was achieved by slightly tilting the furnace, which caused the flux to flow to the bottom of the ampules leaving the products behind, making manual separation with the aid of a

stereomicroscope feasible. Only diffraction peaks from Np_2Se_5 were found in the X-ray powder diffraction pattern of the remaining solid.

Structure Determination. Single-crystal X-ray diffraction data for Np₂Se₅ at 100 K were collected with the use of graphite-monochromatized MoK α radiation ($\lambda = 0.71073$ Å) on a Bruker APEX2 diffractometer.²⁹ The crystal-to-detector distance was 5.106 cm, and data were collected by a scan of 0.3° in ω in groups of 606 frames at φ settings of 0°, 90°, 180°, and 270°. The exposure time was 30 s/frame. The collection of intensity data as well as cell refinement and data reduction were carried out with the use of the program APEX2.²⁹ Precession pictures, generated with APEX2 software, showed only the expected symmetry and systematic absences. There was no evidence of modulation or of splitting of the high-order reflections.

Absorption corrections, as well as incident beam and decay corrections, were performed with the use of the program SADABS.³⁰ The structure was solved with the direct-methods program SHELXS and refined with the least-squares program SHELXL.³¹ The final refinement included anisotropic displacement parameters. The program STRUCTURE TIDY³² was used to standardize the positional parameters. Additional experimental details are given in Table 1 and the Supporting Information.

Table 1. Crystal Data and Structure Refinement for Np₂Se₅

Fw		868.80	
crystal	system	tetragonal	
Ζ		2	
a (Å)		5.4488(3)	
c (Å)		10.6428(7)	
V (Å ³)		315.98(3)	
T (K)		100(2)	
$\rho_c (g/c$.m ³)	9.131	
μ (cm ⁻	·1)	613.65	
$R(F)^a$		0.0188	
$R_w(F_o^2)$) ^b	0.0427	
$R(F) = \sum F_0 -$	$ F_c /\sum F_o $ for $F_o^2 > 2c$	$\sigma(F_{0}^{2}). {}^{b}R_{w}(F_{0}^{2}) = \{\sum [w(F_{0}^{2})]$	$F_{0}^{2} -$
$(\frac{7^2}{c})^2] / \sum w F_o^4 \}^{1/2} f$	for all data; $w^{-1} = \sigma^2 (F$	$(qF_{o}^{2})^{2} + (qF_{o}^{2})^{2}$ for $F_{o}^{2} \ge 0$; w	y ⁻¹ =
$f^2(F_2^2)$ for $F_2^2 < 0$	a = 0.0216		

X-ray Powder Diffraction. X-ray powder diffraction patterns were collected with a Scintag X1 diffractometer using Cu K α radiation (λ = 1.5418 Å). The powder sample was loaded into an encapsulated container with Kapton windows, curved to minimize the X-ray absorption by the Kapton.

X-ray Absorption Near Edge Structure (XANES) Experiments of Np₃Se₅ and Np₂Se₅. Approximately 2 mg each of Np₃Se₅ and Np₂Se₅ were used to prepare samples for XANES measurements. Neptunium samples were finely ground in a mortar and pestle with an appropriate amount of inert diluent. Sample mixtures were loaded in 0.8 mm thick polypropylene holders, and these were further contained by two layers of Kapton tape before being placed into a purpose-built actinide-sample container for measurements on the synchrotron beamline. Np L_{III}-edge X-ray absorption spectra (XAS) were collected at 298 K at the APS on bending magnet beamline 12-BM-B, which is equipped with a Si (111) double-crystal monochromator, a flat energy discriminating 22 keV cutoff mirror, and a toroidal (beam focusing) Rh-coated Pt mirror. Data were collected in transmission mode. Ion chambers were filled with Ar gas. The monochromator energy was calibrated by measuring a Zr metal foil between sample scans and setting the first inflection point of the derivative spectrum to 17998.0 eV.33 The data were reduced and normalized following standard procedures.34

Measured X-ray absorption spectra were pre-edge subtracted and normalized to unit edge-step using SIXPack,³⁵ a graphical user interface front-end to the IFEFFIT XAS analysis package.³⁶ The second derivative of the Np absorption edge spectra were numerically

calculated and smoothed using a binomial smoothing filter to remove high frequency noise. 37

Magnetic Susceptibility Measurements. Magnetic susceptibility data were collected on 6.2 mg of powdered single crystals of Np₂Se₅ with the use of a Quantum Design MPMS 7 SQUID magnetometer. The empty sample holder was measured separately, and the signal was subtracted directly from the magnetic response. Variable field measurements were performed at 2, 10, 15, 20, 50, and 300 K to a maximum of 5 T. Variable temperature experiments were carried out between 5 and 320 K, under applied fields of 0.01, 0.05, 0.2, and 0.5 T; these provided the same results within experimental error.

RESULTS

Syntheses. Preparations of powder samples of An_2Se_5 (An = Th, Np) have been previously reported, including direct reactions between An/AnH_x and Se, or thermal decomposition of AnSe₃.^{13,19,22} Single crystals of Np₂Se₅ were first obtained from the reaction of Np, P₂Se₅, and Se in a molar ratio of 2:3:20 at 1173 K.³⁸ Rational synthesis of Np₂Se₅ from the elements was achieved using an Sb₂Se₃ flux (mp 884 K). Excess Se was added to ensure a complete reaction of Np. Th₂Se₅ has been synthesized in a similar manner and has been found as a byproduct in many thorium selenide reactions.^{23,39} In contrast, numerous attempts to prepare "U₂Se₅" have failed.³⁹ These observations indicate different stabilities of An₂Se₅ (An = Th, U, Np), assuming the compound "U₂Se₅" even exists.

 $\rm Sb_2Se_3$ flux has been successfully employed to synthesize a number of lanthanide selenide single crystals, including $\rm Ln_3LuSe_6$ (Ln = La, Ce),^{26} Gd_{1.05}Sc_{0.95}Se_3,^{40} and EuLn_2Se_4 (Ln = Tb-Lu).^{41} Recently it was used to prepare a lanthanide/ actinide selenide (U_2La_2Se_9) in a near quantitative yield.^{42} In the current study, the Np_2Se_5 was prepared in the same flux. Clearly Sb_2Se_3 flux shows great potential for syntheses of lanthanide and actinide selenides.

Structure. The structure of Np₂Se₅ was examined earlier by X-ray powder diffraction methods.¹³ The diffraction lines were indexed in an orthorhombic, pseudotetragonal unit cell (a = 7.725(3) Å, b = 7.725(3) Å, and c = 10.622(5) Å) because Np₂Se₅ was considered to be isostructural with Th₂S₅, even though there was no evidence for a splitting of reflections similar to that found in Th₂S₅.^{13,22} In the current single-crystal X-ray diffraction data of Np₂Se₅ there was no evidence of either modulation (as in Th₂Se₅)²³ or of splitting of the high order reflections (as in Th₂S₅).²¹ The tetragonal space group $P4_2/nmc$ was determined unambiguously, and the structure was solved in a straightforward manner.

As shown in Figure 1, the tetragonal structure of Np₂Se₅ contains one crystallographically unique Np and two Se positions with the site symmetries of 2mm. (Np), .m. (Se(1)), and $\overline{4}m2$ (Se(2)). Se(1) atoms form one-dimensional infinite chains along *a* and *b* axes with alternating intermediate Se–Se distances (Figure 1b). Se(2) is an isolated Se^{2–} anion with closest Se–Se distances of 3.4391(3) Å, too long to have any significant interactions. The Np atom is coordinated to eight Se(1) and two Se(2) atoms (Figure 2). Each NpSe₁₀ polyhedron shares two Se(1) and one Se(2) vertices with each of four closest identical neighbors with Np–Np distances of 4.4111(3) Å. Furthermore, it shares one Se(1) edge with each of another eight units and a Se(2) corner with each of two other units with Np–Np distances ranging from 4.9917(4) to 5.4488(3) Å.

Selected interatomic distances for Np_2Se_5 are listed in Table 2. The Np–Se distances range from 2.9284(2) to 3.0686(3) Å.

Article

Figure 1. (a) Tetragonal unit cell of Np₂Se₅ in space group of $P4_2/nmc$. There are one-dimensional linear selenide chains along the *a* and *b* axes. Se–Se bonds within the chains are highlighted in green and one of the chains is circled in red; (b) A fragment of an infinite Se(1) chain with alternating long and short Se–Se distances.

Figure 2. Local coordination environment of Np in Np₂Se₅.

Table 2. Selected Interatomic Distances (Å) for Np₂Se₅

	_
$Np(1)-Se(1) \times 2$	2.9861(4)
$Np(1)-Se(1) \times 2$	3.0270(4)
$Np(1)-Se(1) \times 4$	3.0686(3)
$Np(1)-Se(2) \times 2$	2.9284(2)
Se(1)-Se(1)	2.6489(8)
Se(1)-Se(1)	2.7999(8)
$Np(1)-Np(1)^{a}$	4.4111(3)
^{<i>a</i>} Between two face-shared NpSe ₁₀ polyhedra.	

Other Np-Se distances reported from single-crystal studies for both Np³⁺ and Np⁴⁺ cations in various coordination environments are tabulated in Table 3. In the compounds NpCuSe2, $Np_3Se_{51}^{10}$ and NpOSe,⁴⁴ each Np cation is only coordinated by isolated Se²⁻ anions, whereas in NpSe₃,¹⁶ Np₂Se₅, and ANp₂Se₆ $(A = K, Cs)^{45}$ some of the Se atoms connecting to the Np atom engage in additional bonding with each other to form (Se–Se) dimers. The formal coordination numbers of Np atoms in NpSe₃,¹⁶ Np₂Se₅, and ANp₂Se₆⁴⁵ are 8, 10, and 8, respectively; however if the (Se-Se) dimer is considered as one large ligand and is replaced with a point at its center, then Np atoms in these compounds are all six-coordinate. This depiction of the bonding would render questionable comparisons of Np-Se distances among Np₂Se₅ and other compounds in Table 3. Se(1)-Se(1) distances within the infinite chains are 2.6489(8) and 2.7999(8) Å, which are longer than the typical values of approximately 2.36 Å for a single Se-Se bond,⁴⁶ but are significantly shorter than their van der Waals contact (3.88 Å).⁴⁷ These distances are slightly shorter than the corresponding values found for similar selenide chains in AAn_2Se_6 (A = K, Rb, Cs; An = Th, U, Np), for example, 2.698(3) and 2.924(3)

compound	oxidation state	coordination number	Np-Se ²⁻	Np-(Se-Se)	Se–Se around Np	reference
NpCuSe ₂	+3	7	2.9330(6)-3.1419(6)			43
Np ₃ Se ₅	+3	8	2.9922(5)-3.1522(5)			10
Np ₃ Se ₅	+4	7	2.7738(5)-2.9770(7)			10
NpOSe	+4	$9 (40^{2-} + 5Se^{2-})$	3.0055(5)-3.077(1)			44
NpSe ₃	+4	$8 (4Se^{2-} + 2(Se-Se))$	2.866(2) - 2.927(3)	2.859(2), 2.876(2)	2.340(3)	16
Np ₂ Se ₅	?	10 (2Se ²⁻ + 4(Se–Se))	2.9284(2)	2.9861(4) - 3.0686(3)	2.6489(8), 2.7999(8)	this work
KNp ₂ Se ₆	?	8 (4Se ²⁻ + 2(Se–Se))	2.8673(9), 2.9443(6)	2.9048(7)	2.681(2)	45
$CsNp_2Se_6$?	$8 (4Se^{2-} + 2(Se-Se))$	2.869(2), 2.9367(9)	2.898(1)	2.647(3)	45

Table 3. Comparison of Interatomic Distances (Å) Among Known Neptunium Selenides

Figure 3. Orthorhombic unit cell of Th_2S_5 that is twice as large as that of Np_2Se_5 .²¹ The compound crystallizes in space group *Pcnb*. S–S bonds are highlighted in green. One of the S–S chains, which corresponds to the Se(1) chains in Np_2Se_5 , is circled in red. (b) A fragment of a distorted sulfide chain with discrete $S(1)^{2-}$ anions and $S(2)_2^{2-}$ dimers.

Å in $CsTh_2Se_6$, 2.698(3) and 2.854(3) Å in RbU_2Se_6 , and 2.681(2) and 2.844(2) Å in KNp_2Se_6 .⁴⁵

Comparisons of Np_2Se_5 , Th_2S_5 , and Th_2Se_5 . The relationship among the tetragonal, orthorhombic, and monoclinic structures of Np₂Se₅, Th₂S₅, and Th₂Se₅, respectively, has been briefly discussed.^{22,23} Although these three structures are highly related, they have distinct chalcogen-chalcogen (Q-Q)connectivities. The corresponding Se(1) site that forms linear chains in the Np₂Se₅ structure splits into two crystallographically unique S(1) and S(2) positions in the Th₂S₅ structure, which results in a lowering of the overall symmetry (Figures 1 and 3). S(1) atoms exist as discrete S^{2-} anions with S-S distances of 2.858(5) and 2.988(7) Å with neighboring S atoms that are too long to have any significant interactions. S(2) atoms form S_2^{2-} dimers with a reasonable S-S single bond distance of 2.117(7) Å (Figure 3).²¹ The related Th₂Se₅ structure is modulated and contains Se oligomers with a wide distribution of Se-Se distances ranging from 2.447 (5) to 2.967(7) Å. Therefore Q–Q connectivities in An_2Q_5 become increasingly more modular in the order of Np₂Se₅, Th₂Se₅, and Th₂S₅. A similar behavior of the chalcogenide sublattice has been observed in the series of AAn_2Q_6 (A = K, Rb, Cs, Tl; An = La, Th, U, Np; Q = S, Se) depending on the choice of A, An, and Q.^{4,45,48,49} For example, KU_2Se_6 contains linear Se chains with two alternating Se–Se distances, ⁴⁹ CsNp₂Se₆ includes a series of Se oligomers, ⁴⁵ and $K_{0.91}U_{1.79}S_6$, which charge balances with U⁴⁺, displays S⁻ and S₂²⁻ species.⁴⁹ It should be emphasized that there is no evidence of nonstoichiometry or modulation in the present study of Np₂Se₅.

XANES of Np₃Se₅ and Np₂Se₅. Figure 4 shows the comparison between a normalized Np L_{III} -edge XANES spectrum, the second derivative of the XANES spectrum for

Figure 4. Np L_{III}-edge XANES (normalized absorbance, top; second derivative, bottom) of Np₃Se₅ and Np₂Se₅, showing the shift of the Np₂Se₅ inflection point to higher energy.

 Np_2Se_5 , and the reference standard Np_3Se_5 .¹⁰ The absorption edge energies, assigned to the first inflection point of the XANES spectra, are presented in Table 4, where they are compared to edge energies from the literature.^{50–52}

Previous structural and ²³⁷Np Mössbauer spectroscopic studies have inferred that the Np in Np₃Se₅ is mixed-valent with crystallographically unique Np³⁺ and Np⁴⁺ sites in a ratio of $2:1.^{10,11}$ The usual shift in energy between An³⁺ and An⁴⁺ XANES edges are commonly observed to be approximately 4

Table 4. XANES Edge Positions (Np L_{III} -edge) for Neptunium Selenides^{*a*,*b*}

compound	edge energy (eV)	energy relative to Np metal	reference
${{{Np_3Se_5}\atop{{(Np_2^{3+}Np^{4+}Se_5)}}}}$	17608.52	0.48	this work
Np ₂ Se ₅	17609.26	1.22	this work
Np metal	17608.04(5)	0	50,51
Np ³⁺ in 1 M HClO ₄	17613.8(20)	5.76	52

^{*a*}The edge position is defined as the inflection point of the absorption edge or the point where the second derivative of the absorption edge passes through zero. The error in determining the edge energy in this work is 0.14 eV at the 1σ level. ^{*b*}Neptunium edge energies from the literature are included for comparison.

eV for actinide oxides in solution and the solid state.53,54 However, the neptunium selenide compounds show a significant shift toward the edge energy of metallic Np when compared to Np³⁺ dissolved in 1 M perchloric acid. Such effects on the edge energy of plutonium selenides have previously been observed,53 underscoring the need for appropriate reference compounds for XANES determinations of valences. Significant covalent bonding between the Se and the Np may possibly play a role in shifting the absorption edge for this class of compounds to lower energies, which are more characteristic of semiconducting or partially metallic materials.⁵⁵ XANES measurements on the two neptunium selenide samples show a 0.7(2) eV shift in edge position to higher energies for the Np₂Se₅ compound compared to the Np₃Se₅ compound. This shift in edge position indicates an increase in the valence of the Np center in Np₂Se₅ as compared to Np₃Se₅. Furthermore, the shape of the white-line suggests a rather large bandwidth for the unoccupied 6d density of states, another signature of semiconducting or partially metallic materials.^{56,57} We assume an approximate 4.0 eV shift in edge energies between Np³⁺ and Np⁴⁺, consistent with previous measurements⁵² and similar to those previously seen in U and Pu.^{53,58} The shift in XANES edge position of Np₂Se₅ when compared to that of Np₃Se₅ corresponds to an increase in the Np valence of 0.19(5) units. If we set the average valence in Np_3Se_5 at 3.33 then we measure the valence of Np in Np₂Se₅ to be 3.52(5). Despite the assumptions made to obtain this value and the lack of an appropriate Np⁴⁺ selenide standard, it is clear from the XANES measurements that the Np valence in Np_2Se_5 is greater than +3.

Magnetism. The magnetic susceptibility, obtained as a function of temperature under an applied field of 0.01 T, is shown in Figure 5. Highlighted in the inset is the sharp rise in the susceptibility upon cooling that occurs at 18(1) K, a feature indicative of a ferromagnetic-type ordering of the Np moments. The presence of soft ferromagnetism at low temperature, with only a small hysteresis, is supported by the field dependence of the magnetization at low temperature, as revealed in Figure 6. The saturation moment, determined at 0.1 T is $0.87(3) \mu_{\rm B}$, a value that continues to rise linearly with increasing field out to the highest field measured, 5.0 T, where it has reached $1.0(2) \mu_{\rm B}$. The origin of this slightly increasing moment after saturation has not been studied but would be consistent with a slight canting of the ferromagnetic-moment direction with respect to the principal crystal-field axes.

Above the ordering temperature, the magnetic response is consistent with a simple paramagnet. The data can be described with a modified Curie–Weiss law, appropriate for noninteracting moments, according to

Figure 5. Susceptibility of a 6.2 mg sample of Np_2Se_5 obtained under an applied field of 0.01 T. The inset shows the same data in the expanded temperature region to highlight the magnetic transition.

Figure 6. Field dependence of the Np_2Se_5 magnetization at 2 K is consistent with that seen for a soft ferromagnet, as discussed in the text.

$$\chi_{\rm exp} = \frac{C}{T - \theta} + \chi_{\rm TIP}$$

in which θ , the Weiss constant, considered an indication of the interaction energy between local spins, is expressed as a temperature. This attribution to the origins of θ can be vitiated by changing populations of crystal-field states with different moments. χ_{TIP} represents the temperature-independent paramagnetism (TIP) that arises from either itinerant electrons (Pauli paramagnetism) or second-order coupling of crystal-field states (vanVleck paramagnetism). *C* is the Curie constant and is related to the effective magnetic moment by:

$$\mu_{\rm eff} = \left(\frac{3kC}{N{\mu_{\rm B}}^2}\right)^{1/2}$$

with k as the Boltzmann constant, N as Avogadro's number, and $\mu_{\rm B}$ the units of Bohr magnetons, equal to 0.927×10^{-20} erg/Gauss. A plot of the data as $1/\chi$ versus T is not rectilinear, indicating a significant contribution from the TIP term. A plot of the data as χT versus T is also not rectilinear, indicating that within this simple model a Weiss constant is also necessary to reproduce the temperature dependence of the susceptibility.

The best fit to the susceptibility over the temperature range 50-320 K is compared with the data in Figure 7. The Weiss constant determined from the fitting is 21.3(2) K, a value consistent with the onset of ferromagnetic ordering at 18 K suggested by the sharp increase in the susceptibility as the

Figure 7. Susceptibility of a 6.2 mg sample of Np₂Se₅ obtained under an applied field of 0.05 T. The result of the best fit to a modified Curie–Weiss law, shown as the solid line, is C = 0.493(5) emu K/mol, $\theta = 21.3(2)$ K, and $\chi_{TIP} = 0.0014(1)$ emu/mol.

temperature is lowered in that region. The effective moment determined by this fitting method is 1.98(5) $\mu_{\rm B}$, significantly reduced from the free-ion moment expected for either Np³⁺ (2.68 $\mu_{\rm B}$) or Np⁴⁺ (3.62 $\mu_{\rm B}$). The $\chi_{\rm TIP}$ fit obtained from the data is 0.0014(1) emu/mol.

These results are consistent with and add to previous studies on the magnetic susceptibility of Np₂Se₅,¹³ notably confirming the low measured effective moment. The moment could be reduced by the electrostatic field imposed by the surrounding ligands (crystal-field effects)⁵⁹ or it could be the result of Np– Se interactions that result in intermediate-valence behavior, the latter possibility supported by the larger TIP contribution.^{60–62}

DISCUSSION

Valence States. The formula of Th_2S_5 can be written as $(Th^{4+})_2(S^{2-})_3(S_2)^{2-}$ because Th is stable only in its tetravalent state and the S–S distances are either within the range for a single bond (S_2^{2-}) or too long to be considered to have any interactions (S^{2-}) . In contrast, the assignment of valence states in Np₂Se₅ is more challenging from several perspectives. First among them, Np has two stable valence states in chalcogenide systems, +3 and +4. Second, the Se–Se distances within the linear Se chains are 0.3–0.4 Å longer than a typical single Se–Se bond distance, but there is no routine method to quantify the valence of Se.⁷ Third, there are only a limited number of Np–Se distances known from single-crystal studies, and the Np valences are unclear in some of those phases (Table 3). Thus, it is not possible to perform empirical bond-valence calculations to estimate valence states.^{63,64}

The $^{237}\rm Np$ Mössbauer spectrum obtained from a powder sample of $\rm Np_2Se_5$ showed quadrupole splitting with an isomer shift of 12.7(2) mm s⁻¹ relative to NpAl₂ at 77 K, which is close to the middle values between those for the Np⁴⁺-containing and Np³⁺-containing chalcogenides. For example, an isomer shift of -3.2(6) mm s⁻¹ and 31.1(3) mm s⁻¹ were observed for the Np⁴⁺ and Np³⁺ sites in Np₃Se₅, respectively.^{11,13} This suggests that the unique Np in Np₂Se₅ may have an intermediate valence between +3 and +4, although where the "+3" isomer shift ends and the "+4" isomer shift begins is not known. Following common usage, intermediate valence is defined as a noninteger valence for a crytallographically unique site.⁶⁵

XANES results from the current study suggest a higher valence than +3 for Np. Considering the charge-balance, the formula can be written as $(Np^{(3+x)+})_2(Se^{2-})(Se_4)^{(4+2x)-}$ (0 < x

 \leq 1). To obtain a reasonable estimate of *x*, a close comparison can be made between $CsTh_2Se_6^{27}$ and Np_2Se_5 . Similar to Np_2Se_5 , the structure of $CsTh_2Se_6^{27}$ contains two crystallographically unique Se sites. Se(1) is a discrete Se^{2-} anion and Se(2) forms infinite linear chains with alternating Se-Se distances of 2.698(3) and 2.924(3) Å. Charge-balance considerations, based on the formula of CsTh₂Se₆ with an atomic ratio Se(1):Se(2) of 1:2, lead to an average oxidation state of -1.25 per Se(2) within the selenide chain. As we described earlier, the Se-Se distances within the selenide chain in Np₂Se₅ are slightly shorter than those in CsTh₂Se₆, which suggests stronger Se-Se interactions. Distance-valence correlations are interpreted as fewer electrons donated by cations to the p σ^* orbitals of Se–Se interactions, giving rise to a higher oxidation state of Se (>-1.25) for Np₂Se₅. If we use such a correlation here, then the valence state of Np would be between +3 and +3.5 (0 < x < 0.5). Alternatively, if we assume the difference in Se-Se distances between Np₂Se₅ and $CsTh_2Se_6$ are within the acceptable range for $Se^{-1.25}$ anions (x = 0.5), then the valence state of Np would be close to +3.5, which is consistent with Mössbauer and XANES results. In different chemical environments. Se-Se distances for the same valence state could vary over an even wider range. Although the bulk of the data point to an intermediate valent Np, the possibility of Np being in its more common +4 valence state in Np₂Se₅ cannot be completely ruled out.

 M_2Q_5 . Driven by the requirement for charge neutrality, the lanthanide and actinide members of the M_2Q_5 series (Ln_2Te_5) (Ln = La-Nd, Sm, Gd-Ho, Dy),^{66,67} U_2Te_5 ,^{24,25} Np_2Se_5 , Th₂Se₅,²³ Th₂S₅,²¹ and Np₂O₅⁶⁸) provide an excellent example of gradually changing electronic structures from metal to insulator as a function of Q-Q and M-Q interactions. The structure of Ln_2Te_5 ($Ln^{3+}_2(Te^{2-})_2(Te_3)^{2-}$) contains metallic $[Te_3]^{2-}$ two-dimensional sheets where each Te atom connects to four other Te atoms,⁶⁷ whereas the telluride layers in U_2Te_5 are semiconducting, where each Te atom only bonds to two other Te atoms to form one-dimensional chains.^{24,25} These telluride chains in U_2Te_5 are similar to the selenide chains in Np_2Se_5 but with stronger Q-Q interactions. As described above, the Q-Q chains in Th₂Se₅ distort into Se oligomers and further in Th_2S_5 into discrete S_2^{2-} and S^{2-} species. The insulator Np_2O_5 contains neptunyl (NpO_2^+) and O^{2-} ions without any O–O interactions.^{21,68} The Q–Q interactions decrease in the order: $Ln_2Te_5 > U_2Te_5 > Np_2Se_5 > Th_2Se_5 >$ $Th_2S_5 > Np_2O_{51}$ consistent with the general trend observed for tellurides, selenides, sulfides, and oxides. This difference in the tendencies among chalcogens to engage in chalcogenchalcogen interactions has been mainly attributed to the different degree of s-p mixing.⁵ Strong s-p mixing for lighter main-group elements favors a Peierls distortion to form insulating discrete oligomers and monomers, as in Th₂Se₅, Th₂S₅, and Np₂O₅. In contrast, heavier main-group elements have weaker s-p mixing owing to the contraction of lessscreened s orbitals, which allows the existence of less distorted, more metallic entities such as linear chains and planar sheets, as in Ln₂Te₅, U₂Te₅, and Np₂Se₅. The linear chain in Np₂Se₅ can be considered to result from a minor Peierls distortion of an equally spaced chalcogenide chain, compared to the more complete distortion seen in Th_2S_5 and $Th_2Se_5.$ Alternatively this effect can be understood from the difference in chalcogenide basicity and polarizability; the heavier maingroup elements, such as Te, are more basic and softer than the

light element O. Therefore, the electrons on the Te atoms are easier to delocalize into neighboring Te atoms.

Both the susceptibility to the Peierls distortion and the extent of Q-Q bonding depend on the electron count in the anion entities, which is determined by the redox chemistry between the metal and chalcogen (M–Q interactions).⁵ The electronic structures of AAn₂Q₆ compounds have been explained by the insertion of electrons from metals to the Q p σ^* orbitals into the lowest unoccupied molecular orbital (LUMO).45,49 A similar qualitative argument may provide insight into the different Q-Q interactions observed for M2Q5 as well. The relative M^{4+} standard reduction potentials (E°) in aqueous solutions under acidic conditions decrease in the order of Nd (+4.9 V) > Np (+0.22(1) V) > U (-0.553(4) V) > Th (-3.8)V) as a result of a delocalization of f electrons.^{69,70} Whereas these potentials are not expected to be reproduced in the solidstate chalcogenides discussed here, their trend suggests that among the M³⁺ cations, Ln³⁺ is the least susceptible toward the loss of electrons whereas Th³⁺ is the most susceptible when surrounded by the same chalcogen in a similar coordination environment; the oxidizing abilities of chalcogen increase in the order of Te < Se < S < O. Therefore, the number of electrons provided by the metal to the Q p σ^* orbitals of the chalcogenide network should increase across the series from Ln₂Te₅, U₂Te₅, Np₂Se₅, Th₂Se₅, Th₂S₅, to Np₂O₅. As a result, the chalcogenides sublattices are gradually broken down from a two-dimensional Te network in Ln₂Te₅, to one-dimensional chains in U_2Te_5 and Np_2Se_5 , to Se oligomers in Th_2Se_5 , to S_2^{2-1} dimers and S^{2-} anions in Th₂S₅, to discrete O^{2-} anions in Np₂O₅.

Besides the Q–Q and M–Q interactions, it has been suggested that the size ratio of metal to chalcogen could influence overall electronic structures of these compounds.⁶⁷ The crystal radii for six-coordinate ions are Np³⁺= 1.15 Å, Np⁴⁺ = 1.01 Å, Th⁴⁺ = 1.08 Å, Se²⁻ = 1.84 Å, and S²⁻ = 1.70 Å.⁷¹ Low metal:chalcogen radii ratios favor more Q–Q interactions, as larger cations tend to break the contacts between chalcogen atoms. Considering the rigid three-dimensional structures of connected metal polyhedra, steric effects could be significant in Np₂Se₅, Th₂Se₅, and Th₂S₅. In fact, we are unable to distinguish definitively the potentially complementary roles played by steric versus electronic effects when comparing the nonmodulated structures of Np₂Se₅.

CONCLUSIONS

The crystal structure and electronic properties of Np₂Se₅ have been reinvestigated using single-crystal X-ray diffraction methods, XANES, and magnetic susceptibility measurements. Our studies have shown Np₂Se₅ to have a highly related but different structure from those of Th₂S₅ and Th₂Se₅. The results are discussed in terms of a Np valence state between +3 and +4. The major evidence in support of this interpretation lies in the chalcogenide sublattice, where the corresponding linear Se chains in Np₂Se₅ distort into Se oligomers in Th₂Se₅ and further into discrete S_2^{2-} and S^{2-} anions in Th₂S₅. These structural and chemical differences have been attributed to different Q-Q and M-Q interactions, and size ratios of metal to chalcogen. Overall, the electronic properties of Np₂Se₅ fit into the general trend observed for those of the M₂Q₅ series. Np₂Se₅ provides an example of the vital role played by Np in studies of actinide chalcogenide chemistry, the result of its varying redox chemistry.

ASSOCIATED CONTENT

Supporting Information

Crystallographic file in cif format for Np₂Se₅. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: gjin@anl.gov.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The research at Argonne National Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, under contract DEAC02-06CH11357. X-ray absorption spectroscopy data were obtained at the Advanced Photon Source, which is supported by the U.S. DOE, OBES, Materials Sciences under the same contract number. The work at Northwestern University was supported by the U.S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522.

REFERENCES

(1) The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, 2006.

(2) Lee, S.; Foran, B. J. J. Am. Chem. Soc. 1996, 118, 9139-9147.

(3) Chung, D.-Y.; Jobic, S.; Hogan, T.; Kannewurf, C. R.; Brec, R.; Rouxel, J.; Kanatzidis, M. G. J. Am. Chem. Soc. 1997, 119, 2505-2515.
(4) Choi, K.-S.; Patschke, R.; Billinge, S. J. L.; Waner, M. J.; Dantus,

M.; Kanatzidis, M. G. J. Am. Chem. Soc. 1998, 120, 10706-10714.

(5) A. Papoian, G.; Hoffmann, R. Angew. Chem., Int. Ed. 2000, 39, 2408–2448.

(6) Malliakas, C.; Billinge, S. J. L.; Kim, H. J.; Kanatzidis, M. G. J. Am. Chem. Soc. 2005, 127, 6510–6511.

(7) Graf, C.; Assoud, A.; Mayasree, O.; Kleinke, H. *Molecules* **2009**, *14*, 3115–3131.

(8) Noel, H. J. Solid State Chem. 1984, 52, 203-210.

(9) Yoshida, Z.; Johnson, S. G.; Kimura, T.; Krsul, J. R. In *The Chemistry of the Actinide and Transactinide Elements*, 3rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Eds.; Springer: Dordrecht, The Netherlands, 2006; Vol. 2, pp 699–812.

(10) Jin, G. B.; Skanthakumar, S.; Haire, R. G.; Soderholm, L.; Ibers, J. A. *Inorg. Chem.* **2011**, *50*, 1084–1088.

(11) Thevenin, T.; Jove, J.; Pages, M. Hyperfine Interact. 1984, 20, 173–186.

(12) Marcon, J.-P. C. R. Acad. Sc. Paris, Ser. C 1967, 265, 235–237.
(13) Thévenin, T.; Pagès, M.; Wojakowski, A. J. Less-Common Met.

1982, *84*, 133–137.

(14) Marcon, J.-P. Commis. Energ. At. [Fr], Rapp. CEA-R-3919 1969, 1–99.

(15) Damien, D.; Damien, N.; Charvillat, J. P.; Jove, J. Inorg. Nucl. Chem. Lett. 1973, 9, 649–655.

(16) Bellott, B. J.; Haire, R. G.; Ibers, J. A. Z. Anorg. Allg. Chem. 2012, 638, 1777–1779.

- (17) Damien, D. J. Inorg. Nucl. Chem. 1974, 36, 307-308.
- (18) Ulrich, B. J. Less-Common Met. 1987, 128, 7-45.

(19) Graham, J.; McTaggart, F. K. Aust. J. Chem. 1960, 13, 67-73.

(20) Noel, H. J. Inorg. Nucl. Chem. 1980, 42, 1715-1717.

(21) Noel, H.; Potel, M. Acta Crystallogr., Sect. B: Struct. Commun. 1982, 38, 2444–2445.

(22) Kohlmann, H.; Beck, H. P. Z. Kristallogr. 1999, 214, 341–345.
(23) Bellott, B. J.; Malliakas, C. D.; Koscielski, L. A.; Kanatzidis, M. G.; Ibers, J. A. Inorg. Chem. 2012, 52, 944–949.

- (25) Stowe, K. J. Alloys Compd. 1997, 246, 111-123.
- (26) Jin, G. B.; Choi, E. S.; Guertin, R. P.; Brooks, J. S.; Booth, C. H.; Albrecht-Schmitt, T. E. *Inorg. Chem.* **2007**, *46*, 9213–9220.
- (27) Wells, D. M.; Jin, G. B.; Skanthakumar, S.; Haire, R. G.; Soderholm, L.; Ibers, J. A. *Inorg. Chem.* **2009**, *48*, 11513–11517.
- (28) Tideswell, N. W.; Kruse, F. H.; McCullough, J. D. Acta Crystallogr. 1957, 10, 99–102.

(29) APEX2 Version 2009.5-1 and SAINT Version 7.34a Data Collection and Processing Software; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 2009.

(30) SMART Version 5.054 Data Collection and SAINT-Plus Version 6.45a Data Processing Software for the SMART System; Bruker Analytical X-Ray Instruments, Inc.: Madison, WI, 2003.

- (31) Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.
- (32) Gelato, L. M.; Parthé, E. J. Appl. Crystallogr. **1987**, 20, 139–143. (33) McMaster, W. H.; Del Grande, N. K.; Mallett, J. H.; Hubbell, J.
- H. Compilation of X-ray cross sections; Lawrence Livermore National Laboratory: Livermore, CA, 1970.

(34) Teo, B. K. EXAFS: basic principles and data analysis; Springer-Verlag: Berlin, Germany, 1986.

- (35) Webb, S. M. Phys. Scr. 2005, T115, 1011-1014.
- (36) Newville, M. J. Synchrotron Rad. 2001, 8, 322-324.
- (37) Marchand, P.; Marmet, L. Rev. Sci. Instrum. 1983, 54, 1034–1041.
- (38) Jin, G. B.; Skanthakumar, S.; Soderholm, L.; Ibers, J. A., unpublished results.
- (39) Koscielski, L. A.; Bellott, B.; Ibers, J. A., unpublished results.
- (40) Jin, G. B.; Choi, E. S.; Albrecht-Schmitt, T. E. J. Solid State Chem. 2009, 182, 1075-1081.
- (41) Jin, G. B.; Choi, E. S.; Guertin, R. P.; Albrecht-Schmitt, T. E. J. Solid State Chem. 2008, 181, 14–19.

(42) Bugaris, D. E.; Copping, R.; Tyliszczak, T.; Shuh, D. K.; Ibers, J. A. Inorg. Chem. 2010, 49, 2568–2575.

(43) Wells, D. M.; Skanthakumar, S.; Soderholm, L.; Ibers, J. A. Acta Crystallogr., Sect. E: Struct. Rep. Online **2009**, 65, i14.

- (44) Jin, G. B.; Raw, A. D.; Skanthakumar, S.; Haire, R. G.; Soderholm, L.; Ibers, J. A. J. Solid State Chem. **2010**, 183, 547–550.
- (45) Bugaris, D. E.; Wells, D. M.; Yao, J.; Skanthakumar, S.; Haire, R. G.; Soderholm, L.; Ibers, J. A. *Inorg. Chem.* **2010**, *49*, 8381–8388.
- (46) Bensalem, A.; Meerschaut, A.; Rouxel, J. C. R. Acad. Sci. Ser. II 1984, 299, 617–619.

(47) Chauvin, R. J. Phys. Chem. 1992, 96, 9194-9197.

(48) Chan, B. C.; Hulvey, Z.; Abney, K. D.; Dorhout, P. K. Inorg. Chem. 2004, 43, 2453-2455.

(49) Mizoguchi, H.; Gray, D.; Huang, F. Q.; Ibers, J. A. Inorg. Chem. 2006, 45, 3307–3311.

(50) Denecke, M. A.; Dardenne, K.; Marquardt, C. M. *Talanta* 2005, 65, 1008–1014.

- (51) Deslattes, R. D.; Kessler, E. G.; Indelicato, P.; de Billy, L.; Lindroth, E.; Anton, J. *Rev. Mod. Phys.* **2003**, *75*, 35–99.
- (52) Soderholm, L.; Antonio, M. R.; Williams, C.; Wasserman, S. R. Anal. Chem. **1999**, 71, 4622–4628.

(53) Conradson, S. D.; Abney, K. D.; Begg, B. D.; Brady, E. D.; Clark, D. L.; den Auwer, C.; Ding, M.; Dorhout, P. K.; Espinosa-Faller, F. J.; Gordon, P. L.; Haire, R. G.; Hess, N. J.; Hess, R. F.; Keogh, D. W.; Lander, G. H.; Lupinetti, A. J.; Morales, L. A.; Neu, M. P.; Palmer, P. D.; Paviet-Hartmann, P.; Reilly, S. D.; Runde, W. H.; Tait, C. D.; Veirs, D. K.; Wastin, F. Inorg. Chem. **2004**, *43*, 116–131.

(54) Antonio, M. R.; Soderholm, L. In *The Chemistry of the Actinide* and *Transactinide Elements*, 3rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Eds.; Springer: Dordrech The Netherlandst, 2006; Vol. 5, pp 3086–3198.

(55) Schelter, E. J.; Wu, R.; Veauthier, J. M.; Bauer, E. D.; Booth, C. H.; Thomson, R. K.; Graves, C. R.; John, K. D.; Scott, B. L.; Thompson, J. D.; Morris, D. E.; Kiplinger, J. L. *Inorg. Chem.* **2010**, *49*, 1995–2007.

- (56) Kalkowski, G.; Kaindl, G.; Bertram, S.; Schmiester, G.; Rebizant,
- J.; Spirlet, J. C.; Vogt, O. *Solid State Commun.* **1987**, *64*, 193–196. (57) Kalkowski, G.; Kaindl, G.; Brewer, W. D.; Krone, W. Phys. Rev. B **1987**, *35*, 2667–2677.
- (58) Allen, P. G.; Bucher, J. J.; Shuh, D. K.; Edelstein, N. M.; Reich, T. Inorg. Chem. 1997, 36, 4676–4683.

(59) Staub, U.; Soderholm, L. In *Handbook on the Physics and Chemistry of Rare Earths*; Karl .A., Gschneidner, J. L. E., Maple, M. B., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Vol. 30, pp 491–545.

- (60) Maple, M. B.; Wohlleben, D. Phys. Rev. Lett. 1971, 27, 511-515.
- (61) Soderholm, L.; Antonio, M. R.; Skanthakumar, S.; Williams, C. W. J. Am. Chem. Soc. **2002**, 124, 7290–7291.

(62) Morosan, E.; Natelson, D.; Nevidomskyy, A. H.; Si, Q. Adv. Mater. 2012, 24, 4896-4923.

(63) Brese, N. E.; O'Keeffe, M. Acta Crystallogr., Sect. B 1991, 47, 192–197.

(64) Jin, G. B.; Skanthakumar, S.; Haire, R. G.; Soderholm, L.; Ibers, J. A. Inorg. Chem. **2011**, *50*, 9688–9695.

(65) Fulde, P. Electron Correlations in Molecules and Solids; Springer-Verlag GmbH: Berlin, Germany, 1995.

(66) Pardo, M. P.; Flahaut, J. Bull. Soc. Chim. Fr. 1967, 3658–3664.
(67) DiMasi, E.; Foran, B.; Aronson, M. C.; Lee, S. Chem. Mater.
1994, 6, 1867–1874.

(68) Forbes, T. Z.; Burns, P. C.; Skanthakumar, S.; Soderholm, L. J. Am. Chem. Soc. 2007, 129, 2760–2761.

(69) Morss, L. R. In *Standard Potentials in Aqueous Solutions*; Bard, A. J., Parsons, R., Jordan, J., Eds.; IUPAC (Marcel Dekker): New York, 1985; pp 587–629.

(70) Konings, R. J. M.; Morss, L. R.; Fuger, J. In *The Chemistry of the Actinide and Transactinide Elements*, 3rd ed.; Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J., Eds.; Springer: Dordrech, The Netherlandst, 2006; Vol. 4, pp 2113–2224.

(71) Shannon, R. Acta Crystallogr., Sect. A 1976, 32, 751-767.